

    
      
          
            
  
Minicbor, a mini CBOR library


Overview

Minicbor is a small C library for reading and writing CBOR encoded values.



Features


	Suitable for streamed reading: Blocks of CBOR bytes can be parsed incrementally, even when a block splits a CBOR value.
Callbacks allow the application to handle detected CBOR values / tokens as they are encountered.


	Suitable for streamed writing: The write functions are designed to work with an underlying application defined stream.


	No memory allocation making it easy to use Minicbor for developing language bindings.






Usage

The 3 files minicbor.h, minicbor_reader.c and minicbor_writer.c can simply be dropped into an existing project. Alternatively library can be built if required using the supplied Makefile.

By default the functions and types are all prefixed with minicbor_. This can be changed by defining MINICBOR_PREFIX when using the library.



License

This library is released under the terms of the MIT license.
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Reading CBOR


Overview

#include <minicbor.h>

static minicbor_reader_fns Callbacks = {
   .PositiveFn = ...,
   .NegativeFn = ...,
   ...
   .ErrorFn = ...
};

void example_read() {
   minicbor_reader_t Reader;
   Reader.Callbacks = Callbacks;
   Reader.UserData = ...;

   // Initialize Reader
   minicbor_reader_init(&Reader);

   // Parse each block
   unsigned char Bytes[256];
   for (;;) {
      int Count = read(Stream, Bytes, 256);
      if (Count <= 0) break;
      minicbor_read(&Reader, Bytes, Size);
   }
}







Defines


	
CBOR_SIMPLE_FALSE


	Simple false value.






	
CBOR_SIMPLE_TRUE


	Simple true value.






	
CBOR_SIMPLE_NULL


	Simple null value.






	
CBOR_SIMPLE_UNDEF


	Simple undefined value.







Types


	
struct minicbor_reader_t

	A reader for a CBOR stream.
Must be initialized with minicbor_reader_init() before each use.


	
minicbor_reader_fns *Callbacks


	




	
minicbor_readdata_t UserData


	








	
struct minicbor_reader_fns

	
	
void (*PositiveFn)(void *UserData, uint64_t Number)


	Called when a positive integer is encountered.






	
void (*NegativeFn)(void *UserData, uint64_t Number)


	



Called when a negative integer is encountered.


	
void (*BytesFn)(void *UserData, int Size)


	Called when a bytestring is encountered.
Size is nonnegative for definite bytestrings and -1 for indefinite strings.
For definite empty bytestrings, Size is 0 and BytesPieceFn() is not called.
Otherwise, BytesPieceFn() will be called one or more times, with the last call having Final set to 1.






	
void (*BytesPieceFn)(void *UserData, void *Bytes, int Size, int Final)


	Called for each piece of a bytestring.
Note that pieces here do not correspond to CBOR chunks: there may be more pieces than chunks due to streaming.






	
void (*StringFn)(void *UserData, int Size)


	Called when a string is encountered.
Size is nonnegative for definite strings and -1 for indefinite strings.
For definite empty strings, Size is 0 and StringPieceFn() is not called.
Otherwise, StringPieceFn() will be called one or more times, with the last call having Final set to 1.






	
void (*StringPieceFn)(void *UserData, void *Bytes, int Size, int Final)


	Called for each piece of a string.
Note that pieces here do not correspond to CBOR chunks: there may be more pieces than chunks due to streaming.






	
void (*ArrayFn)(void *UserData, int Size)


	Called when an array is encountered.
Size is nonnegative for definite array and -1 for indefinite arrays.






	
void (*MapFn)(void *UserData, int Size)


	Called when an map is encountered.
Size is nonnegative for definite map and -1 for indefinite maps.






	
void (*TagFn)(void *UserData, uint64_t Tag)


	Called when a tag is encountered.






	
void (*SimpleFn)(void *UserData, int Value)


	Called when a simple value is encounted.






	
void (*FloatFn)(void *UserData, double Number)


	



Called when a floating point number is encountered.


	
void (*BreakFn)(void *UserData)


	



Called when a break is encountered.
This is not called for breaks at the end of an indefinite bytestring or string, instead Final is set to 1 in the corresponding piece callback.


	
void (*ErrorFn)(void *UserData, int Position, const char *Message)


	Called when an invalid CBOR sequence is detected.
This puts the reader in an invalid state, any further calls will simply trigger another call ErrorFn();











Functions


	
void minicbor_reader_init(minicbor_reader_t *Reader)


	Initializes Reader for decoding a new CBOR stream.
Must be called before any call to minicbor_read().
A minicbor_reader_t can be reused by calling this function again.






	
int minicbor_read(minicbor_reader_t *Reader, unsigned char *Bytes, unsigned Size)


	Parse some CBOR bytes and call the appropriate callbacks.
Returns the 1 if minicbor_reader_finish() was called within a callback, otherwise returns 0.






	
void minicbor_reader_finish(minicbor_reader_t *Reader)


	Set Reader state to MCS_FINISHED.
Must be called from within a reader callback.






	
int minicbor_reader_remaining(minicbor_reader_t *Reader)


	Returns the number of bytes remainining to be parsed by the reader.









            

          

      

      

    

  

    
      
          
            
  
Writing CBOR


Overview

When an underlying stream type object is available, such as a file handle or an in-memory appendable buffer, simply pass a suitable minicbor_write_fn to the minicbor_write_*() functions.


Note

The minicbor_write_*() do not write the contents of any bytestring / string values. The contents of these values should be written directly by the user.



#include <minicbor.h>

static void stream_write(stream_type *Stream, unsigned char *Bytes, int Size) {
   ...
}

void example_write() {
   stream_type *Stream = ...;
   minicbor_write_indef_array(Stream, stream, write);
   minicbor_write_string(Stream, stream_write, strlen("Hello world!"));
   stream_write(Stream, "Hello world!", strlen("Hello world!"));
   minicbor_write_integer(Stream, stream_write, 100);
   minicbor_write_float4(Stream, stream_write, 1.2);
   minicbor_write_break(Stream, stream_write);
}






Presizing a CBOR output before writing

If a contiguous output buffer is required, then the required CBOR buffer size can be calculated by calling the minicbor_write_*() functions twice.


	For the first pass, use a minicbor_write_fn that takes a pointer to a size_t and simply increments the value with the value of Size. For example:

static void calculate_size(size_t *Required, unsigned char *Bytes, int Size) {
   *Required += Size;
}





The user is responsible for incrementing Total with the content sizes of any bytestrings or strings.



	Then allocate a buffer (e.g. using malloc()) and use a minicbor_write_fn that actual writes the data to the end of the buffer. For example:

static void write_bytes(unsigned char **Tail, unsigned char *Bytes, int Size) {
   memcpy(*Tail, Bytes, Size);
   *Tail += Size;
}












Defines


	
CBOR_SIMPLE_FALSE


	Simple false value.






	
CBOR_SIMPLE_TRUE


	Simple true value.






	
CBOR_SIMPLE_NULL


	Simple null value.






	
CBOR_SIMPLE_UNDEF


	Simple undefined value.







Types


	
typedef void (*minicbor_write_fn)(void *UserData, const void *Bytes, unsigned Size)


	Minicbor write callback type.


	Param UserData

	Pointer passed to minicbor_write_*() functions.



	Param Bytes

	Bytes to write.



	Param Size

	Number of bytes.











Functions


	
void minicbor_write_integer(void *UserData, minicbor_write_fn WriteFn, int64_t Number)


	Write a signed integer. Will automatically write a positive or negative integer with the smallest possible width.






	
void minicbor_write_positive(void *UserData, minicbor_write_fn WriteFn, uint64_t Number)


	Write a positive integer with the smallest width.






	
void minicbor_write_negative(void *UserData, minicbor_write_fn WriteFn, uint64_t Number)


	Write a negative integer with the smallest width. Here Number is the exact value to write into the stream.
This means if X is the desired negative value to write, then Number should be 1 - X or ~X (the one’s complement).
This is to allow the full range of negative numbers to be written.






	
void minicbor_write_bytes(void *UserData, minicbor_write_fn WriteFn, unsigned Size)


	Write the leading bytes of a definite bytestring with Size bytes.
The actual bytes should be written directly by the application.






	
void minicbor_write_indef_bytes(void *UserData, minicbor_write_fn WriteFn)


	Write the leading bytes of an indefinite bytestring.
The chunks should be written using minicbor_write_bytes() followed by the bytes themselves.
Finally, minicbor_write_break() should be used to end the indefinite bytestring.






	
void minicbor_write_string(void *UserData, minicbor_write_fn WriteFn, unsigned Size)


	Write the leading bytes of a definite string with Size bytes.
The actual string should be written directly by the application.






	
void minicbor_write_indef_string(void *UserData, minicbor_write_fn WriteFn)


	Write the leading bytes of an indefinite string.
The chunks should be written using minicbor_write_string() followed by the strings themselves.
Finally, minicbor_write_break() should be used to end the indefinite string.






	
void minicbor_write_array(void *UserData, minicbor_write_fn WriteFn, unsigned Size)


	Write the leading bytes of a definite array with Size elements.
The elements themselves should be written with the appropriate minicbor_write_*() functions.






	
void minicbor_write_indef_array(void *UserData, minicbor_write_fn WriteFn)


	Write the leading bytes of an indefinite array.
The elements themselves should be written with the appropriate minicbor_write_*() functions.
Finally, minicbor_write_break() should be used to ende the indefinite array.






	
void minicbor_write_map(void *UserData, minicbor_write_fn WriteFn, unsigned Size)


	Write the leading bytes of a definite map with Size key-value pairs.
The keys and values themselves should be written with the appropriate minicbor_write_*() functions.






	
void minicbor_write_indef_map(void *UserData, minicbor_write_fn WriteFn)


	Write the leading bytes of an indefinite map.
The keys and values themselves should be written with the appropriate minicbor_write_*() functions.
Finally, minicbor_write_break() should be used to ende the indefinite map.






	
void minicbor_write_float2(void *UserData, minicbor_write_fn WriteFn, double Number)


	Write a floating point number in half precision.






	
void minicbor_write_float4(void *UserData, minicbor_write_fn WriteFn, double Number)


	Write a floating point number in single precision.






	
void minicbor_write_float8(void *UserData, minicbor_write_fn WriteFn, double Number)


	Write a floating point number in double precision.






	
void minicbor_write_simple(void *UserData, minicbor_write_fn WriteFn, unsigned char Simple)


	Write a simple value.






	
void minicbor_write_break(void *UserData, minicbor_write_fn WriteFn)


	Write a break (to end an indefinite bytestring, string, array or map).






	
void minicbor_write_tag(void *UserData, minicbor_write_fn WriteFn, uint64t Tag)


	Write a tag sequence which will apply to the next value written.
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