

Minicbor, a mini CBOR library

Overview

Minicbor is a small C library for reading and writing CBOR encoded values.

Features

	Suitable for streamed reading: Blocks of CBOR bytes can be parsed incrementally, even when a block splits a CBOR value.
Callbacks allow the application to handle detected CBOR values / tokens as they are encountered.

	Suitable for streamed writing: The write functions are designed to work with an underlying application defined stream.

	No memory allocation making it easy to use Minicbor for developing language bindings.

Usage

The 3 files minicbor.h, minicbor_reader.c and minicbor_writer.c can simply be dropped into an existing project. Alternatively library can be built if required using the supplied Makefile.

By default the functions and types are all prefixed with minicbor_. This can be changed by defining MINICBOR_PREFIX when using the library.

License

This library is released under the terms of the MIT license.

Contents:

	Reading CBOR
	Overview

	Defines

	Types

	Functions

	Writing CBOR
	Overview

	Defines

	Types

	Functions

Indices and tables

	Index

	Module Index

	Search Page

Reading CBOR

Overview

#include <minicbor.h>

static minicbor_reader_fns Callbacks = {
 .PositiveFn = ...,
 .NegativeFn = ...,
 ...
 .ErrorFn = ...
};

void example_read() {
 minicbor_reader_t Reader;
 Reader.Callbacks = Callbacks;
 Reader.UserData = ...;

 // Initialize Reader
 minicbor_reader_init(&Reader);

 // Parse each block
 unsigned char Bytes[256];
 for (;;) {
 int Count = read(Stream, Bytes, 256);
 if (Count <= 0) break;
 minicbor_read(&Reader, Bytes, Size);
 }
}

Defines

	
CBOR_SIMPLE_FALSE

	Simple false value.

	
CBOR_SIMPLE_TRUE

	Simple true value.

	
CBOR_SIMPLE_NULL

	Simple null value.

	
CBOR_SIMPLE_UNDEF

	Simple undefined value.

Types

	
struct minicbor_reader_t

	A reader for a CBOR stream.
Must be initialized with minicbor_reader_init() before each use.

	
minicbor_reader_fns *Callbacks

	

	
minicbor_readdata_t UserData

	

	
struct minicbor_reader_fns

	
	
void (*PositiveFn)(void *UserData, uint64_t Number)

	Called when a positive integer is encountered.

	
void (*NegativeFn)(void *UserData, uint64_t Number)

	

Called when a negative integer is encountered.

	
void (*BytesFn)(void *UserData, int Size)

	Called when a bytestring is encountered.
Size is nonnegative for definite bytestrings and -1 for indefinite strings.
For definite empty bytestrings, Size is 0 and BytesPieceFn() is not called.
Otherwise, BytesPieceFn() will be called one or more times, with the last call having Final set to 1.

	
void (*BytesPieceFn)(void *UserData, void *Bytes, int Size, int Final)

	Called for each piece of a bytestring.
Note that pieces here do not correspond to CBOR chunks: there may be more pieces than chunks due to streaming.

	
void (*StringFn)(void *UserData, int Size)

	Called when a string is encountered.
Size is nonnegative for definite strings and -1 for indefinite strings.
For definite empty strings, Size is 0 and StringPieceFn() is not called.
Otherwise, StringPieceFn() will be called one or more times, with the last call having Final set to 1.

	
void (*StringPieceFn)(void *UserData, void *Bytes, int Size, int Final)

	Called for each piece of a string.
Note that pieces here do not correspond to CBOR chunks: there may be more pieces than chunks due to streaming.

	
void (*ArrayFn)(void *UserData, int Size)

	Called when an array is encountered.
Size is nonnegative for definite array and -1 for indefinite arrays.

	
void (*MapFn)(void *UserData, int Size)

	Called when an map is encountered.
Size is nonnegative for definite map and -1 for indefinite maps.

	
void (*TagFn)(void *UserData, uint64_t Tag)

	Called when a tag is encountered.

	
void (*SimpleFn)(void *UserData, int Value)

	Called when a simple value is encounted.

	
void (*FloatFn)(void *UserData, double Number)

	

Called when a floating point number is encountered.

	
void (*BreakFn)(void *UserData)

	

Called when a break is encountered.
This is not called for breaks at the end of an indefinite bytestring or string, instead Final is set to 1 in the corresponding piece callback.

	
void (*ErrorFn)(void *UserData, int Position, const char *Message)

	Called when an invalid CBOR sequence is detected.
This puts the reader in an invalid state, any further calls will simply trigger another call ErrorFn();

Functions

	
void minicbor_reader_init(minicbor_reader_t *Reader)

	Initializes Reader for decoding a new CBOR stream.
Must be called before any call to minicbor_read().
A minicbor_reader_t can be reused by calling this function again.

	
int minicbor_read(minicbor_reader_t *Reader, unsigned char *Bytes, unsigned Size)

	Parse some CBOR bytes and call the appropriate callbacks.
Returns the 1 if minicbor_reader_finish() was called within a callback, otherwise returns 0.

	
void minicbor_reader_finish(minicbor_reader_t *Reader)

	Set Reader state to MCS_FINISHED.
Must be called from within a reader callback.

	
int minicbor_reader_remaining(minicbor_reader_t *Reader)

	Returns the number of bytes remainining to be parsed by the reader.

Writing CBOR

Overview

When an underlying stream type object is available, such as a file handle or an in-memory appendable buffer, simply pass a suitable minicbor_write_fn to the minicbor_write_*() functions.

Note

The minicbor_write_*() do not write the contents of any bytestring / string values. The contents of these values should be written directly by the user.

#include <minicbor.h>

static void stream_write(stream_type *Stream, unsigned char *Bytes, int Size) {
 ...
}

void example_write() {
 stream_type *Stream = ...;
 minicbor_write_indef_array(Stream, stream, write);
 minicbor_write_string(Stream, stream_write, strlen("Hello world!"));
 stream_write(Stream, "Hello world!", strlen("Hello world!"));
 minicbor_write_integer(Stream, stream_write, 100);
 minicbor_write_float4(Stream, stream_write, 1.2);
 minicbor_write_break(Stream, stream_write);
}

Presizing a CBOR output before writing

If a contiguous output buffer is required, then the required CBOR buffer size can be calculated by calling the minicbor_write_*() functions twice.

	For the first pass, use a minicbor_write_fn that takes a pointer to a size_t and simply increments the value with the value of Size. For example:

static void calculate_size(size_t *Required, unsigned char *Bytes, int Size) {
 *Required += Size;
}

The user is responsible for incrementing Total with the content sizes of any bytestrings or strings.

	Then allocate a buffer (e.g. using malloc()) and use a minicbor_write_fn that actual writes the data to the end of the buffer. For example:

static void write_bytes(unsigned char **Tail, unsigned char *Bytes, int Size) {
 memcpy(*Tail, Bytes, Size);
 *Tail += Size;
}

Defines

	
CBOR_SIMPLE_FALSE

	Simple false value.

	
CBOR_SIMPLE_TRUE

	Simple true value.

	
CBOR_SIMPLE_NULL

	Simple null value.

	
CBOR_SIMPLE_UNDEF

	Simple undefined value.

Types

	
typedef void (*minicbor_write_fn)(void *UserData, const void *Bytes, unsigned Size)

	Minicbor write callback type.

	Param UserData

	Pointer passed to minicbor_write_*() functions.

	Param Bytes

	Bytes to write.

	Param Size

	Number of bytes.

Functions

	
void minicbor_write_integer(void *UserData, minicbor_write_fn WriteFn, int64_t Number)

	Write a signed integer. Will automatically write a positive or negative integer with the smallest possible width.

	
void minicbor_write_positive(void *UserData, minicbor_write_fn WriteFn, uint64_t Number)

	Write a positive integer with the smallest width.

	
void minicbor_write_negative(void *UserData, minicbor_write_fn WriteFn, uint64_t Number)

	Write a negative integer with the smallest width. Here Number is the exact value to write into the stream.
This means if X is the desired negative value to write, then Number should be 1 - X or ~X (the one’s complement).
This is to allow the full range of negative numbers to be written.

	
void minicbor_write_bytes(void *UserData, minicbor_write_fn WriteFn, unsigned Size)

	Write the leading bytes of a definite bytestring with Size bytes.
The actual bytes should be written directly by the application.

	
void minicbor_write_indef_bytes(void *UserData, minicbor_write_fn WriteFn)

	Write the leading bytes of an indefinite bytestring.
The chunks should be written using minicbor_write_bytes() followed by the bytes themselves.
Finally, minicbor_write_break() should be used to end the indefinite bytestring.

	
void minicbor_write_string(void *UserData, minicbor_write_fn WriteFn, unsigned Size)

	Write the leading bytes of a definite string with Size bytes.
The actual string should be written directly by the application.

	
void minicbor_write_indef_string(void *UserData, minicbor_write_fn WriteFn)

	Write the leading bytes of an indefinite string.
The chunks should be written using minicbor_write_string() followed by the strings themselves.
Finally, minicbor_write_break() should be used to end the indefinite string.

	
void minicbor_write_array(void *UserData, minicbor_write_fn WriteFn, unsigned Size)

	Write the leading bytes of a definite array with Size elements.
The elements themselves should be written with the appropriate minicbor_write_*() functions.

	
void minicbor_write_indef_array(void *UserData, minicbor_write_fn WriteFn)

	Write the leading bytes of an indefinite array.
The elements themselves should be written with the appropriate minicbor_write_*() functions.
Finally, minicbor_write_break() should be used to ende the indefinite array.

	
void minicbor_write_map(void *UserData, minicbor_write_fn WriteFn, unsigned Size)

	Write the leading bytes of a definite map with Size key-value pairs.
The keys and values themselves should be written with the appropriate minicbor_write_*() functions.

	
void minicbor_write_indef_map(void *UserData, minicbor_write_fn WriteFn)

	Write the leading bytes of an indefinite map.
The keys and values themselves should be written with the appropriate minicbor_write_*() functions.
Finally, minicbor_write_break() should be used to ende the indefinite map.

	
void minicbor_write_float2(void *UserData, minicbor_write_fn WriteFn, double Number)

	Write a floating point number in half precision.

	
void minicbor_write_float4(void *UserData, minicbor_write_fn WriteFn, double Number)

	Write a floating point number in single precision.

	
void minicbor_write_float8(void *UserData, minicbor_write_fn WriteFn, double Number)

	Write a floating point number in double precision.

	
void minicbor_write_simple(void *UserData, minicbor_write_fn WriteFn, unsigned char Simple)

	Write a simple value.

	
void minicbor_write_break(void *UserData, minicbor_write_fn WriteFn)

	Write a break (to end an indefinite bytestring, string, array or map).

	
void minicbor_write_tag(void *UserData, minicbor_write_fn WriteFn, uint64t Tag)

	Write a tag sequence which will apply to the next value written.

Index

 C
 | M
 | P

C

 	
 	CBOR_SIMPLE_FALSE (C macro), [1]

 	CBOR_SIMPLE_NULL (C macro), [1]

 	
 	CBOR_SIMPLE_TRUE (C macro), [1]

 	CBOR_SIMPLE_UNDEF (C macro), [1]

M

 	
 	minicbor_read (C function)

 	minicbor_reader_finish (C function)

 	minicbor_reader_init (C function)

 	minicbor_reader_remaining (C function)

 	minicbor_write_array (C function)

 	minicbor_write_break (C function)

 	minicbor_write_bytes (C function)

 	minicbor_write_float2 (C function)

 	minicbor_write_float4 (C function)

 	minicbor_write_float8 (C function)

 	minicbor_write_fn (C type)

 	
 	minicbor_write_indef_array (C function)

 	minicbor_write_indef_bytes (C function)

 	minicbor_write_indef_map (C function)

 	minicbor_write_indef_string (C function)

 	minicbor_write_integer (C function)

 	minicbor_write_map (C function)

 	minicbor_write_negative (C function)

 	minicbor_write_positive (C function)

 	minicbor_write_simple (C function)

 	minicbor_write_string (C function)

 	minicbor_write_tag (C function)

P

 	
 	PhonyNameDueToError.ArrayFn (C member)

 	PhonyNameDueToError.BreakFn (C member)

 	PhonyNameDueToError.BytesFn (C member)

 	PhonyNameDueToError.BytesPieceFn (C member)

 	PhonyNameDueToError.Callbacks (C member)

 	PhonyNameDueToError.ErrorFn (C member)

 	PhonyNameDueToError.FloatFn (C member)

 	
 	PhonyNameDueToError.MapFn (C member)

 	PhonyNameDueToError.NegativeFn (C member)

 	PhonyNameDueToError.PositiveFn (C member)

 	PhonyNameDueToError.SimpleFn (C member)

 	PhonyNameDueToError.StringFn (C member)

 	PhonyNameDueToError.StringPieceFn (C member)

 	PhonyNameDueToError.TagFn (C member)

 	PhonyNameDueToError.UserData (C member)

 nav.xhtml

 Table of Contents

 		
 Minicbor, a mini CBOR library

 		
 Reading CBOR

 		
 Overview

 		
 Defines

 		
 Types

 		
 Functions

 		
 Writing CBOR

 		
 Overview

 		
 Presizing a CBOR output before writing

 		
 Defines

 		
 Types

 		
 Functions

_static/minus.png

_static/plus.png

_static/file.png

